Determinants of the Money Supply

Qianqian Wang
Henan University

11. 20. 2014
The Fed is not the only player

- Banks’ decision regarding the amount of excess reserves to hold

The Fed can exert more precise control over the MB than it can over total reserve alone
The Fed is not the only player

- **Banks’** decision regarding the amount of excess reserves to hold
- **Depositors’** decisions regarding how much currency to hold

- The Fed can exert more precise control over the MB than it can over total reserve alone
The Fed is not the only player

- **Banks’** decision regarding the amount of excess reserves to hold
- **Depositors’** decisions regarding how much currency to hold
- **Borrowers’** decisions on how much to borrow from banks

The Fed can exert more precise control over the MB than it can over total reserve alone
The money multiplier

\[M = m \times MB \]

Deriving the Money Multiplier
The money multiplier

\[M = m \times MB \]

Deriving the Money Multiplier

\[c = C/D = \text{currency ratio, reflects depositors’ and borrowers’ decisions} \]
The money multiplier

\[M = m \times MB \]

Deriving the Money Multiplier

\[c = \frac{C}{D} = \text{currency ratio, reflects depositors' and borrowers' decisions} \]

\[e = \frac{ER}{D} = \text{excess reserves ratio, reflects banks', and depositors' decisions} \]
■ Deriving the Money Multiplier (continued)

 ■ \(R = RR + ER = rr \times D + e \times D \)

■ M1 is the money supply as currency plus checkable deposits
Deriving the Money Multiplier (continued)

- $R = RR + ER = rr \times D + e \times D$
- $MB = R + C = rr \times D + e \times D + c \times D$

- M1 is the money supply as currency plus checkable deposits
Deriving the Money Multiplier (continued)

- \(R = RR + ER = rr \times D + e \times D \)
- \(MB = R + C = rr \times D + e \times D + c \times D \)
- \(D = \frac{1}{rr + e + c} MB \)

M1 is the money supply as currency plus checkable deposits
- Deriving the Money Multiplier (continued)
 - \(R = RR + ER = rr \times D + e \times D \)
 - \(MB = R + C = rr \times D + e \times D + c \times D \)
 - \(D = \frac{1}{rr + e + c} MB \)

- M1 is the money supply as currency plus checkable deposits
 - \(M = D + c \times D = \frac{1 + c}{rr + e + c} MB \)
Deriving the Money Multiplier (continued)

- \(R = RR + ER = rr \times D + e \times D \)
- \(MB = R + C = rr \times D + e \times D + c \times D \)
- \(D = \frac{1}{rr+e+c}MB \)

M1 is the money supply as currency plus checkable deposits

- \(M = D + c \times D = \frac{1+c}{rr+e+c}MB \)
- \(m = \frac{1+c}{rr+e+c} \)
Deriving the Money Multiplier (continued)

- \(R = RR + ER = rr \times D + e \times D \)
- \(MB = R + C = rr \times D + e \times D + c \times D \)
- \(D = \frac{1}{rr+e+c} MB \)

- **M1** is the money supply as currency plus checkable deposits

 - \(M = D + c \times D = \frac{1+c}{rr+e+c} MB \)
 - \(m = \frac{1+c}{rr+e+c} \)
 - \(\Delta M = m \times \Delta MB \)
1 < m < 1/r (when m = 1/r?)

c > 0 ⇒ the level of currency increases when MB and D increase. That is, some portion of the increase in high-powered money finds its way into currency. Currency does not undergo multiple deposit expansion.

e > 0 ⇒ an increase in MB and D leads to higher excess reserves. ⇒ the reserves used to support checkable deposit and the money supply will not increase as much as it otherwise would
Intuition behind the money multiplier

- $r_r=0.1$, $C=$400, $D=$800, $E_R=$0.8, $M=$1,200

Although there is multiple expansion of deposits, there is no such expansion for currency.
Intuition behind the money multiplier

- \(r_r = 0.1, \ C = \$400, \ D = \$800, \ ER = 0.8, \ M = \$1,200 \)
- \(c = ?, \ e = ? \)

Although there is multiple expansion of deposits, there is no such expansion for currency
Intuition behind the money multiplier

- $r = 0.1$, $C = 400$, $D = 800$, $ER = 0.8$, $M = 1200$
- $c = ?$, $e = ?$
- $m = ?$

Although there is multiple expansion of deposits, there is no such expansion for currency.
Money Multiplier

- **Money supply responses to changes in the factors**
 - $rr=0.15$, $c=0.5$, $e=0.001$
Money supply responses to changes in the factors

- $rr=0.15, c=0.5, e=0.001$
- $rr=0.1, c=0.75, e=0.001$
Money Multiplier

Money supply responses to changes in the factors

- $rr=0.15$, $c=0.5$, $e=0.001$
- $rr=0.1$, $c=0.75$, $e=0.001$
- $rr=0.1$, $c=0.5$, $e=0.005$
Things that change m

- m decreases in r
Things that change \(m \)

- \(m \) decreases in \(r \)
 - \(r \uparrow \Rightarrow \) deficiency in reserves \(\Rightarrow \) banks must contract loans \(\Rightarrow \) decline in deposits and hence in the money supply (M1)
Thangs that change m

- m decreases in r
 - r↑⇒deficiency in reserves⇒banks must contract loans⇒decline in deposits and hence in the money supply (M1)
 - The reduced money supply relative to the same MB ⇒decrease in money multiplier
Determinants of the Money Supply and Tools of Monetary Policy

Things that change m

- m decreases in r
 - r↑ ⇒ deficiency in reserves ⇒ banks must contract loans ⇒ decline in deposits and hence in the money supply (M1)
 - The reduced money supply relative to the same MB ⇒ decrease in money multiplier
- As long as r+e<1, m decreases in c
Things that change m

- m decreases in r
 - $r^\uparrow \Rightarrow$ deficiency in reserves \Rightarrow banks must contract loans \Rightarrow decline in deposits and hence in the money supply (M1)
 - The reduced money supply relative to the same MB \Rightarrow decrease in money multiplier
- As long as $r+e<1$, m decreases in c
 - $c^\uparrow \Rightarrow$ depositors are converting some of their checkable deposits into currency. \Rightarrow overall level of multiple expansion declines
Things that change m

- m decreases in e
■ Things that change m

■ m decreases in e

■ e↑ ⇒ the banking system is using fewer reserves to support checkable deposits ⇒ loans will contract ⇒ a decline in checkable deposits and a decline in the money supply (M1) given the same level of MB ⇒ m↓
Things that change m

- m decreases in e
 - \(e \uparrow \Rightarrow\) the banking system is using fewer reserves to support checkable deposits \(\Rightarrow\) loans will contract \(\Rightarrow\) a decline in checkable deposits and a decline in the money supply (M1) given the same level of MB \(\Rightarrow\) m \(\downarrow\)
 - e decreases in market interest rate i. More costly for banks to hold excess reserves
Things that change m

- m decreases in e
 - e↑ → the banking system is using fewer reserves to support checkable deposits → loans will contract → a decline in checkable deposits and a decline in the money supply (M1) given the same level of MB → m↓
 - e decreases in market interest rate i. More costly for banks to hold excess reserves
 - e increases in expected deposit outflows. Expected benefits for holding excess reserves increase
Summary: Factors that determine the money supply

- Non-borrowed monetary base (+)
 - $MB_N = MB - \text{discount loans} = MB - DL \Rightarrow MB = MB_N + DL$
Summary: Factors that determine the money supply

- Non-borrowed monetary base (+)
 - \(MB_N = MB - \text{discount loans} = MB - DL \Rightarrow MB = MB_N + DL \)
 - \(MB_N \) increases with open market purchases, decreases with open market sales
Summary: Factors that determine the money supply

Non-borrowed monetary base(+)

- $MB_N = MB - \text{discount loans} = MB - DL \Rightarrow MB = MB_N + DL$
- MB_N increases with open market purchases, decreases with open market sales
- Directly under the control of the Fed
Things that change m

- **Discount Loans** (+)
 - Fed sets $i_D =$discount rate
Discount Loans (+)

- Fed sets $i_D =$ discount rate
- influenced by but not controlled by the Fed
Discount Loans (+)

- Fed sets i_D = discount rate
- influenced by but not controlled by the Fed
- $i_D > i$ market interest rate \Rightarrow banks rarely borrow from Fed
Changes in the required reserve ratio
Changes in currency holdings
Changes in excess reserve
Monetary policy: the management of money supply and interest rates

- Interest rates are price or cost of borrowing

Federal funds rate: the interest rate on overnight loans of reserves from one bank to another
Monetary policy: the management of money supply and interest rates
 - Interest rates are price or cost of borrowing
Federal funds rate: the interest rate on overnight loans of reserves from one bank to another
 - The market for reserves is where the federal funds rate is determined
3 Monetary policy tools

\[M1 = m \times (MB_N + BR) \]

- Discount window, Discount Rate \(i_d \)
- Open Market Operation
- \(r \): Required Reserve Ratio
The federal funds rate is the primary indicator of the stance of monetary policy

All three tools of monetary policy affect the federal funds rate
Supply and Demand in the Market for Reserves
Supply and Demand in the Market for Reserves
The discount rate puts a ceiling on the Fed funds rate.

The interest rate paid on reserves, i_{er}, sets a floor for the federal funds rate.
Ex 1: An open market purchase
Ex 2: The discount rate is lowered by the Fed I
Ex 2: The discount rate is lowered by the Fed II
Ex 3: The required reserve is raised by the Fed II
Monetary policy goals

- Price stability: low and stable inflation
Monetary policy goals

- Price stability: low and stable inflation
 - the primary, long-run goal of most central banks
Monetary policy goals

- Price stability: low and stable inflation
 - the primary, long-run goal of most central banks
 - stable prices also promote long-term growth
Monetary policy goals

- Price stability: low and stable inflation
 - the primary, long-run goal of most central banks
 - stable prices also promote long-term growth
- High employment
Monetary policy goals

- Price stability: low and stable inflation
 - the primary, long-run goal of most central banks
 - stable prices also promote long-term growth
- High employment
 - At full employment, the demand = the supply
Monetary policy goals

- Price stability: low and stable inflation
 - the primary, long-run goal of most central banks
 - stable prices also promote long-term growth

- High employment
 - At full employment, the demand = the supply
 - Full employment ≠ Unemployment is zero (frictional and structural unemployment)
Monetary policy goals

- Price stability: low and stable inflation
 - the primary, long-run goal of most central banks
 - stable prices also promote long-term growth

- High employment
 - At full employment, the demand = the supply
 - Full employment ≠ Unemployment is zero (frictional and structural unemployment)

- Steady economic growth
Interest rate stability

- Fluctuations in interest rates can create uncertainty in the economy and make it harder to plan for the future

Financial market stability
Interest rate stability

- Fluctuations in interest rates can create uncertainty in the economy and make it harder to plan for the future
- An increase in interest rates produces large capital losses on long-term bonds and mortgages, which can cause the failure of the financial institutions holding them

Financial market stability
Interest rate stability

- Fluctuations in interest rates can create uncertainty in the economy and make it harder to plan for the future
- An increase in interest rates produces large capital losses on long-term bonds and mortgages, which can cause the failure of the financial institutions holding them

Financial market stability

- Fostered by interest-rate stability
Interest rate stability
- Fluctuations in interest rates can create uncertainty in the economy and make it harder to plan for the future
- An increase in interest rates produces large capital losses on long-term bonds and mortgages, which can cause the failure of the financial institutions holding them

Financial market stability
- Fostered by interest-rate stability
- Financial crises lead to a sharp contraction in economists activity
- Foreign exchange stability
 - Appreciation in dollar makes American industries less competitive
Foreign exchange stability

- Appreciation in dollar makes American industries less competitive
- Depreciation in dollar stimulate inflation in the U.S.
Foreign exchange stability

- Appreciation in dollar makes American industries less competitive
- Depreciation in dollar stimulate inflation in the U.S.
- Uncertainty
Tim inconsistency: Incentive to deviate from optimal long-run policy in short run, leads to suboptimal long-run policies

Central bank’s time inconsistency

- Anticipated inflation has little real effect: Prices rise, but employment, real output, etc., stay the same

Central bank must establish credibility that it will stick to optimal long-run policy
Tim inconsistency: Incentive to deviate from optimal long-run policy in short run, leads to suboptimal long-run policies

Central bank’s time inconsistency

- Anticipated inflation has little real effect: Prices rise, but employment, real output, etc., stay the same
- There is no long-run trade-off between inflation and unemployment: Optimal long-run policy is low inflation

Central bank must establish credibility that it will stick to optimal long-run policy
Credibility and Low Inflation

- **Tim inconsistency**: Incentive to deviate from optimal long-run policy in short run, leads to suboptimal long-run policies

- **Central bank’s time inconsistency**
 - Anticipated inflation has little real effect: Prices rise, but employment, real output, etc., stay the same
 - There is no long-run trade-off between inflation and unemployment: Optimal long-run policy is low inflation
 - There is a short-run trade-off: Central bank tempted to raise inflation

- Central bank must establish credibility that it will stick to optimal long-run policy
Tim inconsistency: Incentive to deviate from optimal long-run policy in short run, leads to suboptimal long-run policies

Central bank’s time inconsistency

- Anticipated inflation has little real effect: Prices rise, but employment, real output, etc., stay the same
- There is no long-run trade-off between inflation and unemployment: Optimal long-run policy is low inflation
- There is a short-run trade-off: Central bank tempted to raise inflation
- Low inflation is not time consistent

Central bank must establish credibility that it will stick to optimal long-run policy
Policies tools → operating/policy instrument → intermediate target → goals

3 tools of monetary policy: OMO, reserve requirement, and the discount rate

- Central banks have direct control

Policy/Operating instrument: responds to the central bank’s tools and indicates the easiness or tightness of monetary policy
- Policies tools → operating/policy instrument → intermediate target → goals

- 3 tools of monetary policy: OMO, reserve requirement, and the discount rate
 - Central banks have direct control

- Policy/Operating instrument: responds to the central bank’s tools and indicates the easiness or tightness of monetary policy
 - reserve aggregate
Policies tools → operating/policy instrument → intermediate target → goals

3 tools of monetary policy: OMO, reserve requirement, and the discount rate

- Central banks have direct control

Policy/Operating instrument: responds to the central bank’s tools and indicates the easiness or tightness of monetary policy

- reserve aggregate
- federal funds rate and other short-term interest rates
- Policies tools → operating/policy instrument → intermediate target → goals

- 3 tools of monetary policy: OMO, reserve requirement, and the discount rate
 - Central banks have direct control

- Policy/Operating instrument: responds to the central bank’s tools and indicates the easiness or tightness of monetary policy
 - reserve aggregate
 - federal funds rate and other short-term interest rates
 - exchange rate (small countries)
Intermediate target:
- monetary aggregate like M2
Intermediate target:
- monetary aggregate like M2
- long-term interest rates